Courtney Andersen studies the role of estrogen receptor-alpha in ovarian cancer.
Chris Barnes investigates the structural details by which transcription factor activity regulates RNA Polymerase II during the universal process of eukaryotic gene expression.
Soma Jobaggy studies nitrated fatty acid pharmacology and the antioxidant response in hypertensive end-organ damage.
Allison Nagle studies growth factor receptor signaling in breast cancer.
Edwin K. Jackson, PhD
Professor
Bridgeside Point Building, Office: Room 514; Labs: Rooms 520 and 522
100 Technology Drive, Pittsburgh, PA 15219

Email:
edj@pitt.edu
Phone: 412-648-1505

Fax: 412-624-5070


Education

BS (Pharmacy), University of Texas at Austin, 1976
PhD (Pharmacology), University of Texas Southwestern Medical Center, 1979
Postdoctoral Fellow (Clinical Pharmacology), Vanderbilt University, 1979-1981



Research Areas
Purine Pharmacology
Cardiovascular and Renal Pharmacology
Metabolic Syndrome Pharmacology
Neuropharmacology
Pharmacology of Cell and Organ Systems
Photo of Edwin K. Jackson, PhD

Purine Pharmacology:  Adenosine is an endogenous purine that regulates most physiological systems.  We are investigating (using a variety of molecular, analytical, cellular and physiological tools and using several strains of genetically modified animals, as well as conducting studies in patients): 1) the production of adenosine from 3’,5’-cAMP and 2’,3’-cAMP (the cAMP-adenosine pathways; see Figure 1); 2) the modulation of adenosine levels by guanosine;3) the roles of adenosine in regulating the sympathetic nervous system, heart, vascular system, kidneys, bladder, brain and immune system;4)  the effects of adenosine on cardiac fibroblasts, vascular smooth muscle cells, vascular endothelial cells, glomerular mesangial cells, renal epithelial cells, T cells and B cells; 5) the role of exosomes in adenosine biochemistry; 6) how to modulate the adenosine system with drugs to treat cardiovascular and renal diseases, traumatic brain injury, cancer and HIV infected patients.
Figure 1

 
Cardiovascular and Renal Pharmacology:  Our recent studies indicate that NPY1-36 (a peptide released from sympathetic nerves) and PYY1-36 (a peptide released from the intestines) trigger proliferation of and extracellular matrix production by preglomerular vascular smooth muscle cells (PGVSMCs) and glomerular mesangial cells (GMCs) in kidneys from genetically-hypertensive animals, a phenomenon mediated via Y1 receptors and that involves signaling by RACK1 (receptor for activated C kinase 1).  Dipeptidyl peptidase IV (DPPIV) metabolizes NPY1-36 and PYY1-36 (Y1 receptor agonists) to NPY3-36 and PYY3-36 (inactive at Y1 receptors).  We are investigating whether a new class of antidiabetic drugs (DPPIV inhibitors) may adversely affect the kidneys of hypertensive subjects by preventing the conversion of PYY1-36 and NPY1-36 to less active metabolites and thereby promoting inappropriate cell proliferation and extracellular matrix production (see Figure 2). 

Figure 2




Important Publications
Jackson EK and Z Mi.  In Vivo cardiovascular pharmacology of 2’,3’-cAMP, 2’-AMP, and 3’-AMP in the rat. Journal of Pharmacology and Experimental Therapeutics (in press), 2013.
Verrier JD, TC Jackson, DG Gillespie, K Janesko-Feldman, R Bansal, A-K Nave, PM Kochanek and EK Jackson.  Oligodendrocyte expressed CNPase is essential to the extracellular 2’,3’-cAMP-adenosine pathway. GLIA (in press), 2013.
Saze Z, PJ Schuler, C-S Hong, D Cheng, EK Jackson and TL Whiteside.  Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood (in press), 2013.
Jackson EK, D Cheng, TC Jackson, JD Verrier and DG Gillespie. Extracellular guanosine regulates extracellular adenosine levels.  American Journal of Physiology-Cell Physiology 304: C406-C421, 2013. 
Cheng D, X Zhu, GD Gillespie and EK Jackson. Role of RACK1 in the differential proliferative effects of neuropeptide Y1-36 and peptide YY1-36 in SHR versus WKY preglomerular vascular smooth muscle cells.  American Journal of Physiology-Renal Physiology 304: F770-F780, 2013. 
Jackson EK and DG Gillespie.  Extracellular 2’,3’-cAMP-adenosine pathway in proximal tubular,  thick ascending limb and collecting duct epithelial cells.   American Journal of Physiology-Renal Physiology 304: F49-F55, 2013. 
Jackson EK, D Cheng, SP Tofovic and Z Mi. Endogenous adenosine contributes to renal sympathetic neurotransmission via postjunctional A1-receptor-mediated coincident signaling.  American Journal of Physiology – Renal Physiology 302: F466-FF76, 2012.
Verrier JD, TC Jackson, PM Kochanek and Jackson EK. The brain in vivo expresses the 2’,3’-cAMP-adenosine pathway.  Journal of Neurochemistry 122: 115-125, 2012. 
Jackson EK, SJ Kochanek and DG Gillespie.  Dipeptidyl peptidase IV regulates proliferation of preglomerular vascular smooth muscle and mesangial cells.  Hypertension 60: 757-764, 2012.
Jackson EK and DG Gillespie. Extracellular 2’,3’-cAMP and 3’,5’-cAMP stimulate proliferation of preglomerular vascular endothelial cells and renal epithelial cells.  American Journal of Physiology – Renal Physiology 303: F954-F962, 2012. 

STUDENT NEWS


UPCOMING EVENTS
11/27/2017 8:30 AM Molecular Pharmacology Journal Club
Lloyd Harvey


11/30/2017 12:00 PM Pharmacology & Chemical Biology Seminar Series
Jeffrey L. Brodsky, Ph.D.


12/4/2017 8:30 AM Molecular Pharmacology Journal Club
Andrew Lamade


Pharmacology and Chemical Biology Event Calendar

Program Achievements

Molecular Pharmacology Graduate Program Ranked #2 in National Research Council Rankings

Molecular Pharmacology Graduate Program Ranked #2 in Faculty Scholarly Productivity Index


Outcomes:  Time to disseration, last five graduating clasess:  4.5 years, Completion Rate: 84.8%

Ranked #12 in National of Institute of Health funding of departments of Pharmacology

Ranked in the top 15 in funding for twenty consecutive years




Back to Top